- Gerar link
- X
- Outros aplicativos
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos
SISTEMA GRACELI INFINITO-DIMENSIONAL.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
COM ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.
ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.
TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA.
SISTEMA MULTIDIMENSIONAL GRACELI
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional.
A desigualdade CHSH, em homenagem a John Clauser, Michael Horne, Abner Shimony, e Richard Holt, fornece uma estrutura experimental para apoiar o teorema de Bell, que afirma que as teorias de variáveis ocultas locais não podem explicar todos os fenômenos da mecânica quântica, particularmente emaranhamento. A desigualdade é deduzida sob a suposição de que existem variáveis locais ocultas e prescreve uma restrição aos valores esperados de um experimento de teste de Bell. A violação experimental da desigualdade de CHSH é, portanto, tomada como evidência de que não existem variáveis ocultas locais.[1]
Declaração
A forma usual da desigualdade de CHSH é
(1)
onde
(2)
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Nesta expressão a e a′ são configurações do detector no lado A, b e b′ no lado B, e as quatro combinações são testadas em experimentos separados. Os termos E(a, b) etc são as correlações quânticas dos pares de partículas, em que a correlação quântica é definida como o valor esperado do produto dos "resultados" do experimento, isto é, a média estatística de A(a)·B(b), onde A e Bsão os resultados separados, usando a codificação +1 para o canal '+' e −1 para o canal '−'.
No artigo de Clauser et al. publicado em 1969,[2] a dedução foi orientada para o uso de detectores de "dois canais" e, de fato, é para eles que geralmente é usada, mas sob o método deles, os únicos resultados possíveis foram +1 and −1. Para se adaptar a situações reais, o que na época significava o uso de luz polarizada e polarizadores de canal único, eles tiveram que interpretar '−' como significando "não detecção no canal '+' ",isto é, ou '−' ou nada. Eles não discutiram no artigo original como a desigualdade de dois canais poderia ser aplicada em experimentos reais com detectores imperfeitos reais, embora mais tarde tenha sido comprovado (Bell, 1971)[3] que a desigualdade em si era igualmente válida. A ocorrência de zero resultados, no entanto, significa que não é mais tão óbvio como os valores de E devem ser estimados a partir dos dados experimentais.
O formalismo matemático da mecânica quântica prevê um valor máximo para S de 2√2 (limite de Tsirelson),[4] que é maior que 2, e as violações de CHSH são, portanto, previstas pela teoria da mecânica quântica.
Determinante de Slater
O determinante de Slater é uma técnica matemática da mecânica quântica que se usa para gerar funções de onda antissimétricas que descrevam os estados colectivos de vários fermiões e que cumpram o princípio de exclusão de Pauli.
Este tipo de determinantes foram nomeados em referência a John C. Slater, físico e químico teórico americano.
Duas partículas
Para ilustrar o seu funcionamento pode-se considerar o caso mais simples: o de duas partículas. Se e
são as coordenadas da partícula 1 e da partícula 2 respectivamente, pode-se gerar a função de ondas colectiva
como produto das funções de onda individuais de cada partícula. Quer dizer:
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Esta expressão é conhecida como o produto de Hartree. De facto, este tipo de função de ondas não é válido para a representação de estados colectivos de fermiões já que esta função de ondas não é antissimétrica ante um intercâmbio de partículas. A função deve satisfazer a seguinte condição
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
O produto de Hartree não satisfaz o princípio de Pauli. Este problema poderá ser resolvido se tivermos em conta a combinação linear de ambos os produtos de Hartree
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde foi incluído o fator (1/√2) para que a função de ondas esteja normalizada convenientemente. Esta última equação pode ser reescrita como um determinante, da seguinte forma:
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
conhecido como determinante de Slater das funções e
. As funções assim geradas têm a propriedade de anular-se si duas das funções de onda de uma partícula forem igual ou, o que é equivalente, dois dos fermiões estejam no mesmo estado quântico. Isto é equivalente a satisfazer o princípio de exclusão de Pauli.
Generalização a
partículas
Esta expressão pode ser generalizada sem grande dificuldade a qualquer número de fermiões. Para um sistema composto por fermiões, define-se o determinante de Slater como
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
O uso do determinante como gerador da função de ondas garante a antissimetríca com respeito ao intercâmbio de partículas, assim como a impossibilidade de que duas partículas estejam no mesmo estado quântico, aspecto crucial ao se tratar com fermiões.
No método de Hartree-Fock, um único determinante de Slater usa-se como aproximação à função de ondas electrónica. Em métodos de cálculo mais precisos, tais como a interacção de configuração ou o MCSCF, utilizam-se sobreposições lineares de determinantes de Slater.
Em física, uma relação de dispersão expressa a relação existente entre as frequências e o comprimento de onda
, ou, de forma equivalente,[1] entre as frequências
e as velocidades
, atrelada a entes físicos de natureza ondulatória (fases) propagando-se em um dado meio material ou mesmo no vácuo. Geralmente, traduz-se mediante uma função ou um gráfico de frequência x comprimento de onda — ou de frequência x velocidade — e quase sempre mostra-se bem dependente do meio de propagação, caracterizando-o inclusive.
De forma similar mas não idêntica, um espectro discrimina a amplitude ou intensidade — o que traduz-se geralmente por quantidade de energia — das fases como função de suas respectivas frequências. Espectros e relações de dispersão encontram-se certamente relacionados, mas são por definição distintos.
Óptica
A relação de dispersão influi diretamente nas trajetórias de propagação de ondas quando há mudança do meio de propagação, visto que as relações de dispersão são geralmente diferentes nos diferentes meios de propagação e que as mudanças nas direções de propagação ocorrem justamente em virtude de mudanças nos comprimentos de onda quando ondas com uma dada frequência atravessam a interface entre os diferentes meios. A dependência destas variações nas direções de propagação com a as frequências ou comprimentos de onda explicam porque a luz branca é, através de um fenômeno ótico conhecido por refração, separada em suas várias cores (frequências) ao atravessar um prisma ou mesmo gotas de água. As relações de dispersão para a onda no ar e no vidro, ou no ar e na água são bem distintas: em ambos os casos as componentes das ondas são fisicamente separadas em função de suas frequências, cada qual sofrendo um maior ou menor desvio em sua trajetória ao mudarem de meio, o que dá origem por fim aos espectros e ao arco-iris.
A relação de dispersão é importante para entender como que a energia, o momento ou mesmo a matéria são transportados de um ponto a outro em qualquer meio. O interesse na relação de dispersão provavelmente começou com o interesse na dispersão de ondas na água, como por exemplo, demostrado por Pierre-Simon Laplace em 1776.[2]
Mecânica
Em mecânica o termo relação de dispersão refere-se à relação — normalmente uma função — que estabelece a energia que um dado ente físico possui em função do momento que este transporta. Em partículas livres no domínio da física clássica — com massas de repouso não nulas e velocidades muito inferiores à da luz — a relação de dispersão é uma função quadrática do momento: . Esta relação aparece de forma explícita no hamiltoniano para o sistema em questão e conduz à expressão para a energia cinética:
ao considerar-se que
.
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
A relação acima vale no contexto da física clássica e para partículas completamente livres. Em situações mais específicas, como aquelas encontradas em física do estado sólido, a exemplo no estudo de elétrons confinados na estrutura dos cristais semicondutores, a relação de dispersão para as partículas — no caso os elétrons — pode mostrar-se dependente inclusive da direção de propagação das mesmos dentro do sistema. No caso do estudo dos cristais o momento para os elétrons dentro dos mesmos é definido de forma adequada à situação, sendo então denominado momento cristalino do elétron.
No âmbito da relatividade ou da mecânica quântica as expressões que definem o momento das partículas em estudo podem assumir formas também bem distintas da expressão clássica , o mesmo ocorrendo para as expressões da energia, mas em qualquer caso a relação entre o momento e a energia — ou seja, a relação de dispersão — mostra-se igualmente importante, sendo geralmente o cerne de qualquer teoria que busque estabelecer a dinâmica de matéria, energia e momento nos sistemas físicos sob seu domínio.
Em qualquer teoria dinâmica a relação de dispersão mostra-se fundamental, e a partir da mesma é que se define outras grandezas geralmente importantes ao estudo, como a massa.
A associação do termo "relação de dispersão" com a relação existente entre energia e momento para os entes físicos com massa de repouso (partículas massivas) decorre diretamente dos princípios estabelecidos por De Broglie e Max Planck no âmbito da física quântica. De Broglie trouxe à luz o fato de que partículas massivas têm comportamento ondulatório, onde seus comprimento de onda encontram—se relacionados aos seus momentos, ao passo que, sob a mesma óptica, Plank mostrou que a energias associadas às partículas quânticas encontram-se relacionadas às frequências das ondas a elas associadas. Estabelecer uma relação entre energia e momento é assim estabelecer uma relação entre frequência e comprimento de onda, ou seja, estabelecer uma relação de dispersão, mesmo para o caso de partículas massivas.
Relações de dispersão para o vácuo
Fato curioso e de relevância na mecânica quântica é que, ao passo que o vácuo é um meio não dispersivo para ondas eletromagnéticas (as assim chamadas velocidades de fase são iguais à velocidade de grupo em um pulso eletromagnético — todos com velocidades iguais à "c", a velocidade da luz), o vácuo é um meio dispersivo para ondas de matéria (funções de onda), a velocidade de fase dependendo do momento segundo a relação [3]:
para partículas livres (ondas de matéria planas).
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Repare que a velocidade (real) esperada para a partícula não é a velocidade de fase de uma onda plana de matéria (partícula livre), mas sim a velocidade de grupo das ondas que formam o pacote de ondas associado à partícula, a velocidade de grupo obedecendo relação bem mais similar à esperada classicamente:
////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde é a constante reduzida de Planck, p é o módulo do momento e k o número de onda atrelados à partícula em questão.
Refração (AO 1945: refracção) é a mudança na velocidade de uma onda ao atravessar a fronteira entre dois meios com diferentes índices de refração. A refração modifica a velocidade de propagação e o comprimento de onda, mantendo uma proporção direta. A constante de proporcionalidade é a frequência, que não se altera.[1]
Índice de refração
O índice de refração é a razão entre a velocidade da luz no vácuo (c) e a velocidade da luz em um determinado meio. Em meios com índices de refração mais baixos (próximos a 1) a luz tem velocidade maior (ou seja, próximo a velocidade da luz no vácuo). A relação pode ser descrita pela fórmula:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Em que: c é a velocidade da luz no vácuo (c = 3 x m/s); v é a velocidade da luz no meio;[2]
A velocidade da luz nos meios materiais é menor que c; e assim n > 1. Por extensão, definimos o índice de refracção do vácuo, que por consequência da definição do modelo é igual a 1. Portanto, sendo n o índice de refracção de um meio qualquer, temos:
A velocidade de propagação da luz no ar depende da frequência da luz, já que o ar é um meio material. Porém, essa velocidade é quase igual a c = 3 x m/s para todas as cores. Ex.: índice de refracção da luz violeta no ar = 1,0002957 e índice de refracção da luz vermelha no ar = 1,0002914. Portanto, nas aplicações, desde que não queiramos uma precisão muito grande, adotaremos o índice de refracção do ar como aproximadamente igual a 1:
Como vimos, as cores, por ordem crescente de frequências, são: vermelho, laranja, amarelo, verde, azul, anil e violeta.
A experiência mostra que, em cada meio material, a velocidade diminui com a frequência, isto é, quanto "maior" a frequência, "menor" a velocidade.
Portanto como , concluímos que o índice de refracção aumenta com a frequência. Quanto "maior" a frequência, "maior" o índice de refracção.
Em geral, quando a densidade de um meio aumenta, o seu índice de refração também aumenta. Como variações de temperatura e pressão alteram a densidade, concluímos que essas alterações também alteram o índice de refracção. No caso dos sólidos, essa alteração é pequena, mas para os líquidos, as variações de temperatura são importantes e, no caso dos gases, tanto as variações de temperatura como as de pressão devem ser consideradas.
A maioria dos índices de refracção é menor que 2; uma exceção é o diamante, cujo índice é aproximadamente 2,4. Para a luz amarela emitida pelo sódio, sua frequência é e cujo comprimento de onda no vácuo é
. Essa é a luz padrão para apresentar os índices de refracção.
Consideremos dois meios "A" e "B", de índices de refracção e
; se
, dizemos que "A" é mais refringente que "B".
Continuidade óptica
Consideremos dois meios transparentes A e B e um feixe de luz dirigindo-se de A para B. Para que haja feixe refratado é necessário que .
Quando , não há luz reflectida e também não há mudança na direção da luz ao mudar de meio; dizemos que há continuidade óptica.
Quando temos um bastão de vidro dentro de um recipiente contendo um líquido com o mesmo índice de refração do vidro, a parte do bastão que está submersa, não refletindo a luz, fica "invisível".
Índice de refracção relativo
Se o índice de refracção de um meio A é e o índice de um meio B é
, definimos:
Sendo vA e vB as velocidades da luz nos meios A e B, temos:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Leis da refração
Consideremos dois meios transparentes A e B e um feixe estreito de luz monocromática, que se propaga inicialmente no meio A, dirigindo-se para o meio B. Suponhamos, ainda, que uma parte da luz consiga penetrar no meio B e que a luz tenha velocidades diferentes nos dois meios. Nesse caso, diremos que houve Refração. O raio que apresenta o feixe incidente é o raio incidente (), e o raio que apresenta o feixe refratado é o raio refratado (
).
A primeira lei da Refração
| O raio incidente, o raio refratado e a normal, no ponto de incidência, estão contidos num mesmo plano. |
|---|
A normal é uma reta perpendicular à superfície no ponto de incidência, θA é denominado ângulo de incidência entre o raio e a normal e θB, ângulo de refração entre o raio e a normal.
A segunda lei da Refração
| Os senos dos ângulos de incidência e refracção são diretamente proporcionais às velocidades da onda nos respectivos meios. |
|---|
Ou seja:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Dessa igualdade tiramos:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
A Segunda Lei da Refração foi descoberta experimentalmente pelo holandês Willebrord van Royen Snell (1591-1626) e mais tarde deduzida por René Descartes, a partir de sua teoria corpuscular da luz. Nos Estados Unidos, ela é chamada de Lei de Snell e na França, de Lei de Descartes; em Portugal e no Brasil é costume chamá-la de Lei de Snell-Descartes.
Inicialmente a Segunda Lei foi apresentada na forma da equação II; no entanto, ela e mais fácil de ser aplicada na forma da equação I.
Observando a equação I, concluímos que, onde o ângulo for menor, o índice de refração será maior. Explicando melhor: se , o mesmo ocorre com seus senos,
; logo, para manter a igualdade da equação I,
. Ou seja, o menor ângulo θB ocorre no meio mais refringente,
.
Pelo princípio da reversibilidade, se a luz faz determinado percurso, ela pode fazer o percurso inverso. Assim, se ela faz o percurso XPY, ela pode fazer o percurso YPX. Mas, tanto num caso como no outro, teremos:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Quando a incidência for normal, não haverá desvio e teremos , e, portanto,
, de modo que a Segunda Lei também é válida nesse caso, na forma da equação I:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
Caso de ângulos pequenos
Na tabela seguinte, apresentamos alguns ângulos "pequenos" expressos em graus e radianos, com o respectivo valor do seno e da tangente:
| Ângulo em graus | Ângulo em radianos | Seno | Tangente |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 2 | 0,035 | 0,035 | 0,035 |
| 4 | 0,070 | 0,070 | 0,070 |
| 6 | 0,105 | 0,104 | 0,105 |
| 8 | 0,140 | 0,139 | 0,140 |
| 10 | 0,174 | 0,174 | 0,176 |
Observando esta tabela, percebemos que, para um ângulo θ, até aproximadamente 10° temos:
quando θ está expresso em
////////////////////////////////////////////////////////////////////////////////////SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
radianos. Assim, para ângulos pequenos, a Segunda Lei da Refração pode ser escrita:
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
para ângulos em radianos e em graus (devido ao fator de conversão entre radianos e graus ser o mesmo para todos os ângulos - 180/pi).
Índices de refração de alguns meios, em relação ao
Termodinâmica quântica
A termodinâmica quântica é o estudo das relações entre duas teorias físicas independentes: termodinâmica e mecânica quântica.[1][2] As duas teorias independentes tratam dos fenômenos físicos da luz e da matéria. Em 1905, Einstein argumentou que a exigência de consistência entre termodinâmica e eletromagnetismo[3] nos leva à conclusão de que a luz é quantizada obtendo a relação
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie Graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
. Este artigo é o início da teoria quântica. Em algumas décadas, a teoria quântica se estabeleceu com um conjunto independente de regras.[4] Atualmente, a termodinâmica quântica trata do surgimento de leis termodinâmicas da mecânica quântica. Ela difere da mecânica estatística quântica na ênfase em processos dinâmicos fora de equilíbrio.[5] Além disso, há uma busca pela teoria para ser relevante para um único sistema quântico individual.[6]
Visualização dinâmica
Existe uma conexão íntima da termodinâmica quântica com a teoria dos sistemas quânticos abertos.[7] A mecânica quântica insere dinâmica na termodinâmica, dando uma base sólida à termodinâmica para tempo finito. A principal premissa é que o mundo inteiro é um grande sistema fechado e, portanto, a evolução do tempo é governada por uma transformação unitária gerada por um hamiltoniano global. Para o cenário combinado do banho do sistema, o Hamiltoniano global pode ser decomposto em:
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde é o sistema hamiltoniano,
é o banho hamiltoniano e
é a interação sistema-banho. O estado do sistema é obtido a partir de um rastreamento parcial sobre o sistema combinado e o banho:
. Dinâmica reduzida é uma descrição equivalente da dinâmica do sistema, utilizando apenas operadores do sistema. Assumindo a propriedade de Markov para a dinâmica, a equação básica de movimento para um sistema quântico aberto é a equação de Lindblad (GKLS):[8][9]
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
é uma parte hamiltoniana (Hermitiana) e
:
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
é a parte dissipativa que descreve implicitamente através dos operadores do sistema a influência do banho no sistema. A propriedade de Markov impõe que o sistema e o banho não estejam correlacionados o tempo todo
. A equação L-GKS é unidirecional e conduz qualquer estado inicial
para uma solução em estado estacionário que é invariável da equação do movimento
.[7]
A imagem de Heisenberg fornece uma ligação direta para observáveis termodinâmicos quânticos. A dinâmica de um sistema observável representado pelo operador, , tem a forma:
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde a possibilidade de que o operador, é explicitamente dependente do tempo, está incluído.
O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.
Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:
- ////////////////////////////////////////////////////////////////////////////////////
SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +
SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico.
SISTEMA GRACELI INFINITO-DIMENSIONAL.
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2,6124.
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário